Polar Codes

Aayush Rajesh, Ronil Mandavia

Department of Electrical Engineering IIT Bombay

Introduction	Polarization	Encoding	Decoding
0000	00000000	000	00

Outline

Introduction	Polarization	Encoding	Decoding
●000	000000000	000	00

Overview

• Polar Codes were introduced by Erdal Arıkan in [1], and are constructed by exploiting a phenomenon known as **channel polarization**.

Introduction	Polarization	Encoding	Decoding
●000	00000000	000	00

Overview

- Polar Codes were introduced by Erdal Arıkan in [1], and are constructed by exploiting a phenomenon known as **channel polarization**.
- It can be shown that these codes achieve Shannon's Capacity.

Introduction	Polarization	Encoding	Decoding
•000	00000000	000	00

Overview

- Polar Codes were introduced by Erdal Arıkan in [1], and are constructed by exploiting a phenomenon known as **channel polarization**.
- It can be shown that these codes achieve Shannon's Capacity.
- We shall look to motivate the polarization phenomenon to understand how these codes achieve capacity. Efficient encoding and decoding procedures shall also be covered.

Introduction	Polarization	Encoding	Decoding
○●○○	000000000	000	00

• Entropy: Entropy measures the average uncertainty in a random variable.

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log p(x)$$

Introduction	Polarization	Encoding	Decoding
O●OO	00000000	000	00

• Entropy: Entropy measures the average uncertainty in a random variable.

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log p(x)$$
$$H(Y|X) = \sum p(x)H(Y|X = x)$$

 $x \in \mathcal{X}$

Introduction	Polarization	Encoding	Decoding
○●○○	00000000	000	00

• Entropy: Entropy measures the average uncertainty in a random variable.

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log p(x)$$
$$H(Y|X) = \sum_{x \in \mathcal{X}} p(x)H(Y|X = x)$$

• Mutual Information: The reduction in uncertainty in one random variable due to knowledge of another.

$$I(X;Y) = H(X) - H(X|Y)$$

• Entropy: Entropy measures the average uncertainty in a random variable.

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log p(x)$$
$$H(Y|X) = \sum_{x \in \mathcal{X}} p(x)H(Y|X = x)$$

• Mutual Information: The reduction in uncertainty in one random variable due to knowledge of another.

$$I(X; Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

• Entropy: Entropy measures the average uncertainty in a random variable.

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log p(x)$$
$$H(Y|X) = \sum_{x \in \mathcal{X}} p(x)H(Y|X = x)$$

• Mutual Information: The reduction in uncertainty in one random variable due to knowledge of another.

$$I(X; Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

• Chain Rule:

$$I(X, Y; Z) = I(X; Z) + I(Y; Z|X)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

4 / 22

Introduction	Polarization	Encoding	Decoding
OOOO	00000000	000	00

The Channel

• Channel $W : \mathcal{X} \to \mathcal{Y}$, characterized by transition probabilities W(y|x).

Introduction	Polarization	Encoding	Decoding
0000	00000000	000	00

The Channel

- Channel $W : \mathcal{X} \to \mathcal{Y}$, characterized by transition probabilities W(y|x).
- The maximum rate of reliable communication over this B-DMC¹ is the **capacity** and is given by

$$C = \max_{p(x)} I(X; Y)$$

¹Binary-Discrete Memoryless Channel

Introduction	Polarization	Encoding	Decoding
OOOO	00000000	000	00

The Channel

- Channel $W : \mathcal{X} \to \mathcal{Y}$, characterized by transition probabilities W(y|x).
- The maximum rate of reliable communication over this B-DMC¹ is the **capacity** and is given by

$$C = \max_{p(x)} I(X; Y)$$

- There are two classes for which analysis of communication is trivial
 - Perfect Channels: C = 1
 - Useless Channels: C = 0

¹Binary-Discrete Memoryless Channel

Introduction 000●	Polarization 00000000	Encoding 000	Decoding 00

Introduction	Polarization	Encoding	Decoding
000●	000000000	000	00

A simple analysis of channel capacity can be undertaken for the BEC(p) channel. We have W(0|0) = W(1|1) = 1 - p and W(?|0) = W(?|1) = p. The mutual information of the channel can be evaluated as

I(X;Y) = H(X) - H(X|Y)

Introduction	Polarization	Encoding	Decoding
000●	00000000	000	00

$$I(X; Y) = H(X) - H(X|Y)$$

= $H(X) - p_Y(?)H(X|?) - p_Y(0)H(X|0) - p_Y(1)H(X|1)$

Introduction	Polarization	Encoding	Decoding
000●	00000000	000	00

$$I(X; Y) = H(X) - H(X|Y)$$

= $H(X) - p_Y(?)H(X|?) - p_Y(0)H(X|0) - p_Y(1)H(X|1)$
= $H(X) - pH(X) - 0 - 0$

Introduction	Polarization	Encoding	Decoding
000●	00000000	000	00

$$I(X; Y) = H(X) - H(X|Y)$$

= $H(X) - p_Y(?)H(X|?) - p_Y(0)H(X|0) - p_Y(1)H(X|1)$
= $(1 - p)H(X)$

Introduction	Polarization	Encoding	Decoding
000●	00000000	000	00

A simple analysis of channel capacity can be undertaken for the BEC(p) channel. We have W(0|0) = W(1|1) = 1 - p and W(?|0) = W(?|1) = p. The mutual information of the channel can be evaluated as

$$I(X; Y) = H(X) - H(X|Y)$$

= $H(X) - p_Y(?)H(X|?) - p_Y(0)H(X|0) - p_Y(1)H(X|1)$
= $(1 - p)H(X)$

This quantity is maximized when $X \sim \text{Ber}(\frac{1}{2})$, giving us C = 1 - p for a BEC(p) channel. Through a similar analysis, we can obtain that C = 1 - H(p) for a BSC(p) channel.

Introduction	Polarization	Encoding	Decoding
0000	•••••••	000	00

Combining Channels

• We can denote $X_1 = U_1 \oplus U_2$ and $X_2 = U_2$. There is an invertible transformation between (U_1, U_2) and (X_1, X_2) .

- We can denote $X_1 = U_1 \oplus U_2$ and $X_2 = U_2$. There is an invertible transformation between (U_1, U_2) and (X_1, X_2) .
- The capacity of this joint ensemble is

$$2C(W) = I(X_1X_2; Y_1Y_2) = I(U_1U_2; Y_1Y_2)$$

- We can denote $X_1 = U_1 \oplus U_2$ and $X_2 = U_2$. There is an invertible transformation between (U_1, U_2) and (X_1, X_2) .
- The capacity of this joint ensemble is

$$2C(W) = I(X_1X_2; Y_1Y_2) = I(U_1U_2; Y_1Y_2) = I(U_1; Y_1Y_2) + I(U_2; Y_1Y_2|U_1)$$

- We can denote $X_1 = U_1 \oplus U_2$ and $X_2 = U_2$. There is an invertible transformation between (U_1, U_2) and (X_1, X_2) .
- The capacity of this joint ensemble is

$$2C(W) = I(X_1X_2; Y_1Y_2) = I(U_1U_2; Y_1Y_2) = I(U_1; Y_1Y_2) + I(U_2; Y_1Y_2|U_1) = I(U_1; Y_1Y_2) + I(U_2; Y_1Y_2U_1)$$

- We can denote $X_1 = U_1 \oplus U_2$ and $X_2 = U_2$. There is an invertible transformation between (U_1, U_2) and (X_1, X_2) .
- The capacity of this joint ensemble is

$$2C(W) = I(X_1X_2; Y_1Y_2) = I(U_1U_2; Y_1Y_2) = I(U_1; Y_1Y_2) + I(U_2; Y_1Y_2|U_1) = I(U_1; Y_1Y_2) + I(U_2; Y_1Y_2U_1) = C(W^-) + C(W^+)$$

- We can denote $X_1 = U_1 \oplus U_2$ and $X_2 = U_2$. There is an invertible transformation between (U_1, U_2) and (X_1, X_2) .
- The capacity of this joint ensemble is

$$2C(W) = I(X_1X_2; Y_1Y_2) = I(U_1U_2; Y_1Y_2)$$

= $I(U_1; Y_1Y_2) + I(U_2; Y_1Y_2|U_1)$
= $I(U_1; Y_1Y_2) + I(U_2; Y_1Y_2U_1)$
= $C(W^-) + C(W^+)$

- We can denote $X_1 = U_1 \oplus U_2$ and $X_2 = U_2$. There is an invertible transformation between (U_1, U_2) and (X_1, X_2) .
- The capacity of this joint ensemble is

$$2C(W) = I(X_1X_2; Y_1Y_2) = I(U_1U_2; Y_1Y_2)$$

= $I(U_1; Y_1Y_2) + I(U_2; Y_1Y_2|U_1)$
= $I(U_1; Y_1Y_2) + I(U_2; Y_1Y_2U_1)$
= $C(W^-) + C(W^+)$

Combining Channels

- We can denote $X_1 = U_1 \oplus U_2$ and $X_2 = U_2$. There is an invertible transformation between (U_1, U_2) and (X_1, X_2) .
- The capacity of this joint ensemble is

$$2C(W) = I(X_1X_2; Y_1Y_2) = I(U_1U_2; Y_1Y_2)$$

= $I(U_1; Y_1Y_2) + I(U_2; Y_1Y_2|U_1)$
= $I(U_1; Y_1Y_2) + I(U_2; Y_1Y_2U_1)$
= $C(W^-) + C(W^+)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のの()

• We now have two different "channels", W^- and W^+ . Total channel capacity is conserved, but distributed unevenly. One is better than the original channel, and the other worse. This is at the heart of polarization.

• Channel W^- has input U_1 and output

$$(Y_1, Y_2) = \begin{cases} (X_1, X_2) & \text{w.p. } (1-p)^2 \\ (?, X_2) & \text{w.p. } p(1-p) \\ (X_1, ?) & \text{w.p. } (1-p)p \\ (?, ?) & \text{w.p. } p^2 \end{cases}$$

• Channel W^- has input U_1 and output

$$(Y_1, Y_2) = \begin{cases} (X_1, X_2) & \text{w.p. } (1-p)^2 \\ (?, X_2) & \text{w.p. } p(1-p) \\ (X_1, ?) & \text{w.p. } (1-p)p \\ (?, ?) & \text{w.p. } p^2 \end{cases}$$

 First case is good, other three can be treated as erasure. Therefore W⁻ is BEC(p⁻), where p⁻ = 2p - p².

• Channel W^- has input U_1 and output

• Channel W^+ has input U_2 and output

$$(Y_1, Y_2) = \begin{cases} (X_1, X_2) & \text{w.p. } (1-p)^2 \\ (?, X_2) & \text{w.p. } p(1-p) \\ (X_1, ?) & \text{w.p. } (1-p)p \\ (?, ?) & \text{w.p. } p^2 \end{cases}$$

$$(Y_1, Y_2, U_1) = \begin{cases} (X_1, X_2, U_1) & \text{w.p. } (1-p)^2 \\ (?, X_2, U_1) & \text{w.p. } p(1-p) \\ (X_1, ?, U_1) & \text{w.p. } (1-p)p \\ (?, ?, U_1) & \text{w.p. } p^2 \end{cases}$$

. .

8 / 22

• First case is good, other three can be treated as erasure. Therefore W^- is BEC(p^-), where $p^- = 2p - p^2$.

• Channel W^- has input U_1 and output

• Channel W^+ has input U_2 and output

$$(Y_1, Y_2) = \begin{cases} (X_1, X_2) & \text{w.p. } (1-p)^2 \\ (?, X_2) & \text{w.p. } p(1-p) \\ (X_1, ?) & \text{w.p. } (1-p)p \\ (?, ?) & \text{w.p. } p^2 \end{cases}$$

 First case is good, other three can be treated as erasure. Therefore W⁻ is BEC(p⁻), where p⁻ = 2p - p².

$$(Y_1, Y_2, U_1) = \begin{cases} (X_1, X_2, U_1) & \text{w.p. } (1-p)^2 \\ (?, X_2, U_1) & \text{w.p. } p(1-p) \\ (X_1, ?, U_1) & \text{w.p. } (1-p)p \\ (?, ?, U_1) & \text{w.p. } p^2 \end{cases}$$

 Last case can be treated as erasure, other three are good. Therefore W⁺ is BEC(p⁺), where p⁺ = p².

• Channel W^- has input U_1 and output

Channel W⁺ has input U₂ and output

$$(Y_1, Y_2) = \begin{cases} (X_1, X_2) & \text{w.p. } (1-p)^2 \\ (?, X_2) & \text{w.p. } p(1-p) \\ (X_1, ?) & \text{w.p. } (1-p)p \\ (?, ?) & \text{w.p. } p^2 \end{cases}$$

$$(Y_1, Y_2, U_1) = \begin{cases} (X_1, X_2, U_1) & \text{w.p. } (1-p)^2 \\ (?, X_2, U_1) & \text{w.p. } p(1-p) \\ (X_1, ?, U_1) & \text{w.p. } (1-p)p \\ (?, ?, U_1) & \text{w.p. } p^2 \end{cases}$$

//...

- First case is good, other three can be treated as erasure. Therefore W⁻ is BEC(p⁻), where p⁻ = 2p - p².
- Last case can be treated as erasure, other three are good. Therefore W⁺ is BEC(p⁺), where p⁺ = p².

Note that $p^- \ge p^+$ for all $p \in [0,1]$. Therefore, we have the relation 2

$$C(W^-) \leq C(W) \leq C(W^+)$$

Introduction	Polarization	Encoding	Decoding
0000	00000000	000	00

• Channel $W^-: U_1 \to (Y_1, Y_2)$. Valid channel.

Introduction	Polarization	Encoding	Decoding
0000	00000000	000	00

- Channel $W^-: U_1 \to (Y_1, Y_2)$. Valid channel.
- Channel $W^+: U_2 \rightarrow (Y_1, Y_2, U_1).$

Introduction	Polarization	Encoding	Decoding
0000	00●000000	000	00

- Channel $W^-: U_1 \to (Y_1, Y_2)$. Valid channel.
- Channel $W^+: U_2 \to (Y_1, Y_2, U_1)$. Not available to receiver.

Introduction	Polarization	Encoding	Decoding
0000	00000000	000	OO

- Channel $W^-: U_1 \to (Y_1, Y_2)$. Valid channel.
- Channel $W^+: U_2
 ightarrow (Y_1, Y_2, U_1)$. Not available to receiver.

Theoretical Receiver

Practical Receiver
Introduction	Polarization	Encoding	Decoding
0000	00000000	000	00

Digression: Real Or Not?

- Channel $W^-: U_1 \to (Y_1, Y_2)$. Valid channel.
- Channel $W^+: U_2
 ightarrow (Y_1, Y_2, U_1)$. Not available to receiver.

Theoretical Receiver

$\hat{U_1} = \mathsf{Decode}(Y_1, Y_2)$ $\hat{U_2} = \mathsf{Decode}(Y_1, Y_2, U_1)$

Practical Receiver

$$\hat{U}_1 = \mathsf{Decode}(Y_1, Y_2)$$

 $\hat{U}_2 = \mathsf{Decode}(Y_1, Y_2, \hat{U}_1)$

Introduction	Polarization	Encoding	Decoding
0000	00000000	000	00

Digression: Real Or Not?

- Channel $W^-: U_1 \to (Y_1, Y_2)$. Valid channel.
- Channel $W^+: U_2
 ightarrow (Y_1, Y_2, U_1)$. Not available to receiver.

Theoretical Receiver	Practical Receiver
$\hat{U}_1 = Decode(Y_1,Y_2)$	$\hat{U_1} = Decode(Y_1, Y_2)$
$\hat{U_2} = Decode(Y_1, Y_2, U_1)$	$\hat{U_2} = Decode(\mathit{Y_1}, \mathit{Y_2}, \hat{U_1})$

• Observe that $(\hat{U}_1, \hat{U}_2) \neq (U_1, U_2)$ for practical receiver (also termed **block error**) only when it is also the case with the theoretical receiver.

Digression: Real Or Not?

- Channel $W^-: U_1 \to (Y_1, Y_2)$. Valid channel.
- Channel $W^+: U_2
 ightarrow (Y_1, Y_2, U_1)$. Not available to receiver.

Theoretical Receiver	Practical Receiver
$\hat{U_1} = Decode(Y_1,Y_2)$	$\hat{U_1} = Decode(Y_1, Y_2)$
$\hat{U_2} = Decode(Y_1, Y_2, U_1)$	$\hat{U}_2 = Decode(\mathit{Y}_1, \mathit{Y}_2, \hat{U}_1)$

- Observe that $(\hat{U}_1, \hat{U}_2) \neq (U_1, U_2)$ for practical receiver (also termed **block error**) only when it is also the case with the theoretical receiver.
- Therefore, our treatment for these theoretical channels holds for those implemented in practice.

Introduction 0000	Polarization 000●00000	Encoding 000	Decoding OO
General Approach			

Figure: Accumulate and Redistribute Capacities (Polar Coding Tutorial, Arıkan)

NOC 目目 イヨト イヨト イロト

Introduction	Polarization	Encoding	Decoding
0000	0000●0000	000	00

Introduction	Polarization	Encoding	Decoding
0000	00000000	000	00

Introduction	Polarization	Encoding	Decoding
0000	00000000	000	00

Introduction	Polarization	Encoding	Decoding
0000	0000●0000	000	00

Introduction	Polarization	Encoding	Decoding
0000	00000000	000	00

Introduction	Polarization	Encoding	Decoding
0000	00000000	000	00

•
$$W^{--}$$
 is BEC(p^{--}), $p^{--} = 2p^{-} - p^{-2}$

Introduction	Polarization	Encoding	Decoding
0000	0000●0000	000	00

•
$$W^{--}$$
 is BEC(p^{--}), $p^{--} = 2p^{-} - p^{-2}$

•
$$W^{+-}$$
 is BEC(p^{+-}), $p^{+-} = 2p^+ - p^{+2}$

Introduction	Polarization	Encoding	Decoding
0000	000000000	000	00

•
$$W^{--}$$
 is BEC(p^{--}), $p^{--} = 2p^{-} - p^{-2}$

•
$$W^{+-}$$
 is BEC(p^{+-}), $p^{+-} = 2p^+ - p^{+2}$

•
$$W^{-+}$$
 is BEC(p^{-+}), $p^{-+} = p^{-2}$

11 / 22

Encoding 000

•
$$W^{--}$$
 is BEC(p^{--}), $p^{--} = 2p^{-} - p^{-2}$

•
$$W^{+-}$$
 is BEC(p^{+-}), $p^{+-} = 2p^+ - p^{+2}$

•
$$W^{-+}$$
 is BEC(p^{-+}), $p^{-+} = p^{-2}$

•
$$W^{++}$$
 is BEC(p^{++}), $p^{++} = p^{+2}$

Introduction	Polarization	Encoding	Decoding
0000	000000000	000	00

Figure: Polarized Capacities for BEC(0.5) channel [2]

Note that for $N = 2^t$ channels, we require t stages of repeated polar transforms. We can see that the capacity of W^{++} has improved significantly, while that of W^{--} has deteriorated vastly ³.

Introduction	Polarization	Encoding	Decoding
0000	0000●0000	000	00

Figure: Polarized Capacities for BEC(0.5) channel [2]

Note that for $N = 2^t$ channels, we require *t* stages of repeated polar transforms. We can see that the capacity of W^{++} has improved significantly, while that of W^{--} has deteriorated vastly ³. Are we approaching extremal polarization?

³Termed the Matthew Effect: The good become better and the bad get worse. $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle$

ntroduction	Polarization	Encoding	Decoding
DOOO	00000●000	000	00

Figure: Distribution of capacities as polarization increases for BEC(0.4)

ntroduction	Polarization	Encoding	Decoding
2000	00000●000	000	00

Figure: Distribution of capacities as polarization increases for BEC(0.4)

・ロト・白ア・トロア・山下 シック

12 / 22

ntroduction	Polarization	Encoding	Decoding
DOOO	00000●000	000	00

Figure: Distribution of capacities as polarization increases for BEC(0.4)

ntroduction	Polarization	Encoding	Decodi
DOOO	00000●000	000	00
·			

Figure: Distribution of capacities as polarization increases for BEC(0.4)

・ロト・白ア・トロア・山下 シック

12 / 22

troduction	Polarization	Encoding
000	000000000	000

Figure: Evolution of Polarization Martingale [2]

Introduction	Polarization	Encoding	Decoding
0000	000000000	000	00

Theorem

As the number of channels $N = 2^t$ increases, the channel capacities $\{C(W_i)\}$ polarize. For any $\delta \in (0, 1)$,

$$\frac{1}{N}\sum_{i=1}^{N}\mathbb{1}\{C(W_i)>1-\delta\}\longrightarrow C(W)$$

and

$$\frac{1}{N}\sum_{i=1}^{N}\mathbb{1}\{C(W_i) < \delta\} \longrightarrow 1 - C(W)$$

Introduction	Polarization	Encoding	Decoding
0000	000000000	000	00

Theorem

As the number of channels $N = 2^t$ increases, the channel capacities $\{C(W_i)\}$ polarize. For any $\delta \in (0, 1)$,

$$\frac{1}{N}\sum_{i=1}^{N}\mathbb{I}\{C(W_i) > 1 - \delta\} \longrightarrow C(W)$$

and

$$\frac{1}{N}\sum_{i=1}^{N}\mathbb{I}\left\{C(W_i) < \delta\right\} \longrightarrow 1 - C(W)$$

 The theorem tells us that, upon repeatedly applying polarization, the fraction of δ-good channels converges to C(W), and the fraction of δ-bad channels converges to 1 - C(W).

Introduction	Polarization	Encoding	Decoding
0000	000000000	000	00

Theorem

As the number of channels $N = 2^t$ increases, the channel capacities $\{C(W_i)\}$ polarize. For any $\delta \in (0, 1)$,

$$\frac{1}{N}\sum_{i=1}^{N}\mathbb{I}\{C(W_i)>1-\delta\}\longrightarrow C(W)$$

and

$$\frac{1}{N}\sum_{i=1}^{N}\mathbb{1}\{C(W_i) < \delta\} \longrightarrow 1 - C(W)$$

- The theorem tells us that, upon repeatedly applying polarization, the fraction of δ-good channels converges to C(W), and the fraction of δ-bad channels converges to 1 - C(W).
- As a corollary, we can see that the fraction of δ -"mediocre" channels, i.e. those with $C(W_i) \in (\delta, 1 \delta)$, converges to 0.

Introduction	Polarization	Encoding	Decoding
0000	000000000	000	00

Theorem

As the number of channels $N = 2^t$ increases, the channel capacities $\{C(W_i)\}$ polarize. For any $\delta \in (0, 1)$,

$$\frac{1}{N}\sum_{i=1}^{N}\mathbb{I}\{C(W_i)>1-\delta\}\longrightarrow C(W)$$

and

$$\frac{1}{N}\sum_{i=1}^{N}\mathbb{1}\{C(W_i) < \delta\} \longrightarrow 1 - C(W)$$

- The theorem tells us that, upon repeatedly applying polarization, the fraction of δ-good channels converges to C(W), and the fraction of δ-bad channels converges to 1 - C(W).
- As a corollary, we can see that the fraction of δ -"mediocre" channels, i.e. those with $C(W_i) \in (\delta, 1 \delta)$, converges to 0.
- This can be proven in a more general case by applying Doob's Martingale Convergence Theorem, and taking into account the fact that $\{C(W_i)\}$ is a martingale bounded in (0, 1).

Introduction	Polarization	Encoding	Decoding
0000	0000000●0	000	OO
Proof of Theorem	(for BEC) - I		

• Let us quantify a particular behavior of a channel. For a BEC(*p*) channel *W*, define $U(W) = \sqrt{p(1-p)}$.

Introduction 0000	Polarization 0000000●0	Encoding 000	Decoding 00

- Let us quantify a particular behavior of a channel. For a BEC(*p*) channel *W*, define $U(W) = \sqrt{p(1-p)}$.
- Observe that $U(W^+) = U(W)\sqrt{p(1+p)}$ and $U(W^-) = U(W)\sqrt{(1-p)(2-p)}$.

- Let us quantify a particular behavior of a channel. For a BEC(*p*) channel *W*, define $U(W) = \sqrt{p(1-p)}$.
- Observe that $U(W^+) = U(W)\sqrt{p(1+p)}$ and $U(W^-) = U(W)\sqrt{(1-p)(2-p)}$.
- Therefore

$$\frac{1}{2}(U(W^+) + U(W^-)) = \frac{1}{2}U(W)(\sqrt{p(1+p)} + \sqrt{(1-p)(2-p)}) \le \frac{\sqrt{3}}{2}U(W)$$

- Let us quantify a particular behavior of a channel. For a BEC(*p*) channel *W*, define $U(W) = \sqrt{p(1-p)}$.
- Observe that $U(W^+) = U(W)\sqrt{p(1+p)}$ and $U(W^-) = U(W)\sqrt{(1-p)(2-p)}$.
- Therefore

.

$$\frac{1}{2}(U(W^+) + U(W^-)) = \frac{1}{2}U(W)(\sqrt{p(1+p)} + \sqrt{(1-p)(2-p)}) \le \frac{\sqrt{3}}{2}U(W)$$

• Expanding the sum

$$\frac{1}{2^t}\sum_{i=1}^{2^t}U(W_i) \leq \left(\frac{\sqrt{3}}{2}\right)^t U(W)$$

- Let us quantify a particular behavior of a channel. For a BEC(*p*) channel *W*, define $U(W) = \sqrt{p(1-p)}$.
- Observe that $U(W^+) = U(W)\sqrt{p(1+p)}$ and $U(W^-) = U(W)\sqrt{(1-p)(2-p)}$.
- Therefore

.

$$\frac{1}{2}(U(W^+) + U(W^-)) = \frac{1}{2}U(W)(\sqrt{p(1+p)} + \sqrt{(1-p)(2-p)}) \le \frac{\sqrt{3}}{2}U(W)$$

• Expanding the sum

$$\frac{1}{2^t}\sum_{i=1}^{2^t}U(W_i)\leq \left(\frac{\sqrt{3}}{2}\right)^tU(W)$$

We also have that

$$\mathbb{1}\left\{\mathcal{C}(W_i)\in (\delta,1-\delta)
ight\}\leq rac{U(W_i)}{\sqrt{\delta(1-\delta)}}$$

• If we define the fraction of δ -mediocre channels as $\mu_t(\delta)$, we have

$$\mu_t(\delta)\coloneqq rac{1}{2t}\sum_{i=1}^{2^t}\mathbb{1}\{\mathcal{C}(\mathcal{W}_i)\in (\delta,1-\delta)\}$$

• If we define the fraction of δ -mediocre channels as $\mu_t(\delta)$, we have

$$\mu_t(\delta) \coloneqq rac{1}{2^t} \sum_{i=1}^{2^t} \mathbb{I}\{C(W_i) \in (\delta, 1-\delta)\}$$

• Therefore

$$\mu_t(\delta) \leq \left(\frac{\sqrt{3}}{2}\right)^t \frac{U(W)}{\sqrt{\delta(1-\delta)}}$$

• If we define the fraction of δ -mediocre channels as $\mu_t(\delta)$, we have

$$\mu_t(\delta) \coloneqq rac{1}{2^t} \sum_{i=1}^{2^t} \mathbb{1}\{C(W_i) \in (\delta, 1-\delta)\}$$

• Therefore

$$\mu_t(\delta) \leq \left(rac{\sqrt{3}}{2}
ight)^t rac{U(W)}{\sqrt{\delta(1-\delta)}}$$

• So as the number of channels N (and hence t) increases, this fraction goes to zero.

• If we define the fraction of δ -mediocre channels as $\mu_t(\delta)$, we have

$$\mu_t(\delta) \coloneqq rac{1}{2^t} \sum_{i=1}^{2^t} \mathbb{I}\{C(W_i) \in (\delta, 1-\delta)\}$$

Therefore

$$\mu_t(\delta) \leq \left(rac{\sqrt{3}}{2}
ight)^t rac{U(W)}{\sqrt{\delta(1-\delta)}}$$

- So as the number of channels N (and hence t) increases, this fraction goes to zero.
- The fraction of perfect and useless channels follows trivially from the conservation of channel capacity.

Introduction	Polarization	Encoding	Decoding
0000	000000000	●00	00

Encoding Scheme

Suppose we wish to communicate at rate *R*:

Introduction 0000	Polarization 00000000	Encoding ●00	Decoding OO
Encoding Scheme			

Suppose we wish to communicate at rate R:

• Create $N = 2^t$ copies of the original channel W. We can apply the polarization transformation t times to generate our N synthetic channels.

Introduction 0000	Polarization 00000000	Encoding ●00	Decoding OO
Encoding Scheme			

Suppose we wish to communicate at rate R:

- Create $N = 2^t$ copies of the original channel W. We can apply the polarization transformation t times to generate our N synthetic channels.
- Select the $k = N \cdot R$ synthetic channels with the best polarized channel capacities, and set their inputs to be our information bits. Freeze the inputs of the remaining channels to some value (say 0).
| Introduction
0000 | Polarization
00000000 | Encoding
●00 | Decoding
OO |
|----------------------|--------------------------|-----------------|----------------|
| | | | |
| Encoding Scheme | | | |

Suppose we wish to communicate at rate R:

- Create $N = 2^t$ copies of the original channel W. We can apply the polarization transformation t times to generate our N synthetic channels.
- Select the $k = N \cdot R$ synthetic channels with the best polarized channel capacities, and set their inputs to be our information bits. Freeze the inputs of the remaining channels to some value (say 0).
- Note that we can almost continuously adjust the rate of transmission by adding or deleting a polarized channel in use.

Introduction 0000	Polarization 00000000	Encoding ●00	Decoding OO
Encoding Scheme			

Suppose we wish to communicate at rate R:

- Create $N = 2^t$ copies of the original channel W. We can apply the polarization transformation t times to generate our N synthetic channels.
- Select the $k = N \cdot R$ synthetic channels with the best polarized channel capacities, and set their inputs to be our information bits. Freeze the inputs of the remaining channels to some value (say 0).
- Note that we can almost continuously adjust the rate of transmission by adding or deleting a polarized channel in use.
- Furthermore, the polarization theorem guarantees that, for large enough N, the fraction of perfect channels approaches C(W). In such a scenario, we can reliably select these perfect channels to be our best ones to transmit information bits over. Therefore, we can achieve rates all the way up till the channel capacity.

Introduction 0000	Polarization 00000000	Encoding ●00	Decoding OO
Encoding Schomo			

Encoding Scheme

Suppose we wish to communicate at rate R:

- Create $N = 2^t$ copies of the original channel W. We can apply the polarization transformation t times to generate our N synthetic channels.
- Select the $k = N \cdot R$ synthetic channels with the best polarized channel capacities, and set their inputs to be our information bits. Freeze the inputs of the remaining channels to some value (say 0).
- Note that we can almost continuously adjust the rate of transmission by adding or deleting a polarized channel in use.
- Furthermore, the polarization theorem guarantees that, for large enough N, the fraction of perfect channels approaches C(W). In such a scenario, we can reliably select these perfect channels to be our best ones to transmit information bits over. Therefore, we can achieve rates all the way up till the channel capacity.

Remark

Unlike the goal of traditional code construction to maximize the minimum distance between codewords, polar coding aims to reduce the probability of error along information-bearing channels.

Introduction	Polarization	Encoding	Decoding
0000	00000000	O●O	00

Encoding Example

Figure: 3-stage polar encoder for BEC(0.4)

Introduction 0000	Polarization 00000000	Encoding O●O	Decoding OO
Encoding Example			

Figure: 3-stage polar encoder for BEC(0.4)

Introduction 0000	Polarization 00000000	Encoding O●O	Decoding OO
Encoding Example			

Figure: 3-stage polar encoder for BEC(0.4)

Introduction	Polarization	Encoding	Decoding
0000	000000000	O●O	00

Encoding Example

 Suppose we maintain a low tolerance of error, and we decide to use only the best three synthesized channels for transmitting data. Therefore, we have

$$\mathsf{Rate} = \frac{3}{8} = 0.375$$

Figure: 3-stage polar encoder for BEC(0.4)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

Introduction	Polarization	Encoding	Decoding
0000	000000000	○●○	00

C(W)

0.016

0.242

0.348

0.832

0.497

0.913

0.949

0.999

Encoding Example

 Suppose we maintain a low tolerance of error, and we decide to use only the best three synthesized channels for transmitting data. Therefore, we have

$$\mathsf{Rate} = \frac{3}{8} = 0.375$$

• Our control over the rate can be seen more clearly if we decide to use the best 4 channels. In this case

$$\mathsf{Rate}=\frac{4}{8}=0.5$$

Figure: 3-stage polar encoder for BEC(0.4)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

Introduction	Polarization	Encoding	Decoding
0000	00000000	OO●	00

Encoding Complexity

- For a code of length $N = 2^t$,
 - As noted, we will have *t* polarization stages to synthesize our channels.

Encoding Complexity

- For a code of length $N = 2^t$,
 - As noted, we will have *t* polarization stages to synthesize our channels.
 - Each polarization stage has N/2 butterfly units so as to cover all codeword indices. Each butterfly unit can carry out computation in O(1) time.

Figure: Butterfly Unit

Encoding Complexity

For a code of length $N = 2^t$,

- As noted, we will have t polarization stages to synthesize our channels.
- Each polarization stage has N/2 butterfly units so as to cover all codeword indices. Each butterfly unit can carry out computation in O(1) time.
- Therefore, encoding complexity is $\mathcal{O}(t \cdot N)$, or

 $\mathcal{O}(N \log N)$

Figure: Butterfly Unit

Successive Cancellation Decoding

Looking at Stage 2

- $W^-: b_1 \rightarrow Y_1 Y_3$
- $W^-: b_2 \rightarrow Y_2 Y_4$
- $W^+: b_3 \rightarrow Y_1 Y_3 \hat{b_1}$
- $W^+: b_4 \to Y_2 Y_4 \hat{b_2}$

Successive Cancellation Decoding

Looking at Stage 2

- $W^-: b_1 \rightarrow Y_1 Y_3$
- $W^-: b_2 \rightarrow Y_2 Y_4$
- $W^+: b_3 \rightarrow Y_1 Y_3 \hat{b_1}$
- $W^+: b_4 \to Y_2 Y_4 \hat{b_2}$

Looking at Stage 1

- $W^{--}: U_1 \rightarrow b_1 b_2$
- $W^{-+}: U_2 \to b_1 b_2 \hat{U}_1$
- $W^{+-}: U_3 \rightarrow b_3 b_4$
- $W^{++}: U_4 \to b_3 b_4 \hat{U}_3$

Successive Cancellation Decoding

Looking at Stage 2

- $W^-: b_1 \rightarrow Y_1 Y_3$
- $W^-: b_2 \rightarrow Y_2 Y_4$
- $W^+: b_3 \rightarrow Y_1 Y_3 \hat{b_1}$
- $W^+: b_4 \rightarrow Y_2 Y_4 \hat{b_2}$

Looking at Stage 1

- $W^{--}: U_1 \rightarrow b_1 b_2$
- $W^{-+}: U_2 \to b_1 b_2 \hat{U}_1$
- $W^{+-}: U_3 \rightarrow b_3 b_4$
- $W^{++}: U_4 \to b_3 b_4 \hat{U}_3$

Therefore, our channels can be represented as

- $W^{--}: U_1 \to Y_1 Y_2 Y_3 Y_4$
- $W^{-+}: U_2 \to Y_1 Y_2 Y_3 Y_4 \hat{U}_1$
- $W^{+-}: U_3 \to Y_1 Y_2 Y_3 Y_4 \hat{b}_1 \hat{b}_2$
- $W^{++}: U_4 \to Y_1 Y_2 Y_3 Y_4 \hat{b}_1 \hat{b}_2 \hat{U}_3$

Successive Cancellation Decoding

Looking at Stage 2

- $W^-: b_1 \rightarrow Y_1 Y_3$
- $W^-: b_2 \rightarrow Y_2 Y_4$
- $W^+: b_3 \rightarrow Y_1 Y_3 \hat{b_1}$
- $W^+: b_4 \rightarrow Y_2 Y_4 \hat{b_2}$

Looking at Stage 1

- $W^{--}: U_1 \rightarrow b_1 b_2$
- $W^{-+}: U_2 \to b_1 b_2 \hat{U}_1$
- $W^{+-}: U_3 \rightarrow b_3 b_4$
- $W^{++}: U_4 \to b_3 b_4 \hat{U}_3$

Therefore, our channels can be represented as

- $W^{--}: U_1 \to Y_1 Y_2 Y_3 Y_4$
- $W^{-+}: U_2 \to Y_1 Y_2 Y_3 Y_4 \hat{U}_1$
- $W^{+-}: U_3 \to Y_1 Y_2 Y_3 Y_4 \hat{U}_1 \hat{U}_2$
- $W^{++}: U_4 \to Y_1 Y_2 Y_3 Y_4 \hat{U}_1 \hat{U}_2 \hat{U}_3$

Introduction	Polarization	Encoding	Decoding
0000	00000000	000	○●

Algorithm and Complexity

• Decoding can be done using maximum likelihood decision making.

$$L^{--} = \frac{\mathbb{P}\{Y_{1}Y_{2}Y_{3}Y_{4}|U_{1}=0\}}{\mathbb{P}\{Y_{1}Y_{2}Y_{3}Y_{4}|U_{1}=1\}} \qquad \qquad L^{-+} = \frac{\mathbb{P}\{Y_{1}Y_{2}Y_{3}Y_{4}\hat{U}_{1}|U_{2}=0\}}{\mathbb{P}\{Y_{1}Y_{2}Y_{3}Y_{4}\hat{U}_{1}|U_{2}=1\}}$$
$$\hat{U}_{1} = \begin{cases} 0 & \text{if } U_{1} \text{ is frozen} \\ 0 & \text{if } L^{--} > 1 \\ 1 & \text{otherwise} \end{cases} \qquad \qquad \hat{U}_{2} = \begin{cases} 0 & \text{if } U_{2} \text{ is frozen} \\ 0 & \text{if } L^{-+} > 1 \\ 1 & \text{otherwise} \end{cases}$$

Decisions for \hat{U}_3 and \hat{U}_4 follow similarly.

Introduction	Polarization	Encoding	Decoding
0000	00000000	000	O●

Algorithm and Complexity

• Decoding can be done using maximum likelihood decision making.

$$\begin{split} L^{--} &= \frac{\mathbb{P}\{Y_1 Y_2 Y_3 Y_4 | U_1 = 0\}}{\mathbb{P}\{Y_1 Y_2 Y_3 Y_4 | U_1 = 1\}} \\ \hat{U}_1 &= \begin{cases} 0 & \text{if } U_1 \text{ is frozen} \\ 0 & \text{if } L^{--} > 1 \\ 1 & \text{otherwise} \end{cases} \\ \hat{U}_2 &= \begin{cases} 0 & \text{if } U_2 \text{ is frozen} \\ 0 & \text{if } L^{-+} > 1 \\ 1 & \text{otherwise} \end{cases} \end{split}$$

Decisions for \hat{U}_3 and \hat{U}_4 follow similarly.

• We have $t = \log N$ stages, and at each stage we make N estimations. Therefore, our decoding complexity is

 $\mathcal{O}(N \log N)$

References

- - E. Arikan, "Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels," *IEEE Transactions on Information Theory*, vol. 55, no. 7, pp. 3051–3073, 2009.
- K. Niu, K. Chen, J. Lin, and Q. T. Zhang, "Polar codes: Primary concepts and practical decoding algorithms," IEEE Communications Magazine, vol. 52, no. 7, pp. 192–203, 2014.

Relevant Resources:

- The Flesh of Polar Codes, ISIT 2017
- Polar Coding Tutorial, Arıkan

Figure: Symmetric block diagram for 2-stage polarizer [1]

Figure: Symmetric block diagram for general polarizer [1]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Figure: Alternate block diagram for general polarizer [1]

<ロ > < (回)> < (回)> < (目)> < (目)> < (目)> < (日)> < (H)> <

Define

$$F_2 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

Figure: Alternate block diagram for general polarizer [1]

< □ > < □ > < Ξ > < Ξ > < Ξ > Ξ = < <
< 22 / 22

Define

$$F_2 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

• Then, for $N = 2^t$,

$$F_{2N} = \begin{bmatrix} F_N & 0 \\ F_N & F_N \end{bmatrix}$$

Figure: Alternate block diagram for general polarizer [1]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Define

$$F_2 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

• Then, for $N = 2^t$,

$$F_{2N} = \begin{bmatrix} F_N & 0 \\ F_N & F_N \end{bmatrix}$$

• Therefore, the generator matrix for a $N = 2^t$ length polar code is

$$G_N = B_N F_N$$

where B_N is a bit-reversal permutation matrix.

Figure: Alternate block diagram for general polarizer [1]