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Introduction Polarization Encoding Decoding

Overview

Polar Codes were introduced by Erdal Arıkan in [1], and are constructed by exploiting a
phenomenon known as channel polarization.

It can be shown that these codes achieve Shannon’s Capacity.

We shall look to motivate the polarization phenomenon to understand how these codes
achieve capacity. Efficient encoding and decoding procedures shall also be covered.
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Introduction Polarization Encoding Decoding

Information Theoretic Measures

Entropy: Entropy measures the average uncertainty in a random variable.

H(X ) = −
∑
x∈X

p(x) log p(x)

H(Y |X ) =
∑
x∈X

p(x)H(Y |X = x)

Mutual Information: The reduction in uncertainty in one random variable due to knowledge
of another.

I (X ;Y ) = H(X )− H(X |Y )

= H(Y )− H(Y |X )

Chain Rule:
I (X ,Y ;Z) = I (X ;Z) + I (Y ;Z |X )
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Introduction Polarization Encoding Decoding

The Channel

WX Y

Channel W : X → Y, characterized by transition probabilities W (y |x).

The maximum rate of reliable communication over this B-DMC1 is the capacity and is given
by

C = max
p(x)

I (X ;Y )

There are two classes for which analysis of communication is trivial

Perfect Channels: C = 1
Useless Channels: C = 0

1Binary-Discrete Memoryless Channel
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Introduction Polarization Encoding Decoding

Channel Capacity

A simple analysis of channel capacity can be undertaken for the BEC(p) channel. We have
W (0|0) = W (1|1) = 1− p and W (?|0) = W (?|1) = p. The mutual information of the channel
can be evaluated as

I (X ;Y ) = H(X )− H(X |Y )

= H(X )− pY (?)H(X |?)− pY (0)H(X |0)− pY (1)H(X |1)
= H(X )− pH(X )− 0− 0

This quantity is maximized when X ∼ Ber
(
1
2

)
, giving us C = 1− p for a BEC(p) channel.

Through a similar analysis, we can obtain that C = 1− H(p) for a BSC(p) channel.
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Introduction Polarization Encoding Decoding

Combining Channels

We can denote X1 = U1 ⊕ U2 and X2 = U2. There is
an invertible transformation between (U1,U2) and
(X1,X2).

The capacity of this joint ensemble is

2C(W ) = I (X1X2;Y1Y2) = I (U1U2;Y1Y2)

= I (U1;Y1Y2) + I (U2;Y1Y2|U1)

= I (U1;Y1Y2) + I (U2;Y1Y2U1)

= C(W−) + C(W+)

W

W

U1 Y1

U2 Y2

We now have two different “channels”, W− and W+. Total channel capacity is conserved,
but distributed unevenly. One is better than the original channel, and the other worse. This
is at the heart of polarization.
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Introduction Polarization Encoding Decoding

New Channel Capacities: BEC Case

Channel W− has input U1 and output

(Y1,Y2) =


(X1,X2) w.p. (1− p)2

(?,X2) w.p. p(1− p)

(X1, ?) w.p. (1− p)p

(?, ?) w.p. p2

First case is good, other three can be
treated as erasure. Therefore W− is
BEC(p−), where p− = 2p − p2.

Channel W+ has input U2 and output

(Y1,Y2,U1) =


(X1,X2,U1) w.p. (1− p)2

(?,X2,U1) w.p. p(1− p)

(X1, ?,U1) w.p. (1− p)p

(?, ?,U1) w.p. p2

Last case can be treated as erasure, other three
are good. Therefore W+ is BEC(p+), where
p+ = p2.

Note that p− ≥ p+ for all p ∈ [0, 1]. Therefore, we have the relation 2

C(W−) ≤ C(W ) ≤ C(W+)

2In general, C(W+) = 2C(W ) − C2(W ) and C(W−) = C2(W ). Refer to [1] for details.
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Introduction Polarization Encoding Decoding

Digression: Real Or Not?

Channel W− : U1 → (Y1,Y2). Valid channel.

Channel W+ : U2 → (Y1,Y2,U1).

Not available to receiver.

Theoretical Receiver

Û1 = Decode(Y1,Y2)

Û2 = Decode(Y1,Y2,U1)

Practical Receiver

Û1 = Decode(Y1,Y2)

Û2 = Decode(Y1,Y2, Û1)

Observe that (Û1, Û2) ̸= (U1,U2) for practical receiver (also termed block error) only when
it is also the case with the theoretical receiver.

Therefore, our treatment for these theoretical channels holds for those implemented in
practice.
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Û2 = Decode(Y1,Y2, Û1)
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General Approach

Figure: Accumulate and Redistribute Capacities (Polar Coding Tutorial, Arıkan)
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Introduction Polarization Encoding Decoding

Recursively Polarize

W−− is BEC(p−−), p−− = 2p− − p−
2

W+− is BEC(p+−), p+− = 2p+ − p+2

W−+ is BEC(p−+), p−+ = p−
2

W++ is BEC(p++), p++ = p+2

W

W

W

W

Note that for N = 2t channels, we require t stages of repeated polar transforms. We can see that
the capacity of W++ has improved significantly, while that of W−− has deteriorated vastly 3.

Are we approaching extremal polarization?

3Termed the Matthew Effect: The good become better and the bad get worse.
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Visualizing Polarization

Figure: Distribution of capacities as polarization increases for BEC(0.4)
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Visualizing Polarization

Figure: Evolution of Polarization Martingale [2]
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Introduction Polarization Encoding Decoding

Polarization Theorem

Theorem

As the number of channels N = 2t increases, the channel capacities {C(Wi )} polarize. For any
δ ∈ (0, 1),

1

N

N∑
i=1

1{C(Wi ) > 1− δ} −→ C(W )

and

1

N

N∑
i=1

1{C(Wi ) < δ} −→ 1− C(W )

The theorem tells us that, upon repeatedly applying polarization, the fraction of δ-good
channels converges to C(W ), and the fraction of δ-bad channels converges to 1− C(W ).

As a corollary, we can see that the fraction of δ-“mediocre” channels, i.e. those with
C(Wi ) ∈ (δ, 1− δ), converges to 0.

This can be proven in a more general case by applying Doob’s Martingale Convergence
Theorem, and taking into account the fact that {C(Wi )} is a martingale bounded in (0, 1).
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Introduction Polarization Encoding Decoding

Proof of Theorem (for BEC) - I

Let us quantify a particular behavior of a channel. For a BEC(p) channel W , define

U(W ) =
√

p(1− p).

Observe that U(W+) = U(W )
√

p(1 + p) and U(W−) = U(W )
√

(1− p)(2− p).

Therefore

1

2
(U(W+) + U(W−)) =

1

2
U(W )(

√
p(1 + p) +

√
(1− p)(2− p)) ≤

√
3

2
U(W )

.

Expanding the sum

1

2t

2t∑
i=1

U(Wi ) ≤
(√

3

2

)t

U(W )

We also have that

1{C(Wi ) ∈ (δ, 1− δ)} ≤
U(Wi )√
δ(1− δ)
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Introduction Polarization Encoding Decoding

Proof of Theorem (for BEC) - II

If we define the fraction of δ-mediocre channels as µt(δ), we have

µt(δ) :=
1

2t

2t∑
i=1

1{C(Wi ) ∈ (δ, 1− δ)}

Therefore

µt(δ) ≤
(√

3

2

)t
U(W )√
δ(1− δ)

So as the number of channels N (and hence t) increases, this fraction goes to zero.

The fraction of perfect and useless channels follows trivially from the conservation of channel
capacity.

■
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Introduction Polarization Encoding Decoding

Encoding Scheme

Suppose we wish to communicate at rate R:

Create N = 2t copies of the original channel W . We can apply the polarization
transformation t times to generate our N synthetic channels.

Select the k = N · R synthetic channels with the best polarized channel capacities, and set
their inputs to be our information bits. Freeze the inputs of the remaining channels to some
value (say 0).

Note that we can almost continuously adjust the rate of transmission by adding or deleting a
polarized channel in use.

Furthermore, the polarization theorem guarantees that, for large enough N, the fraction of
perfect channels approaches C(W ). In such a scenario, we can reliably select these perfect
channels to be our best ones to transmit information bits over. Therefore, we can achieve
rates all the way up till the channel capacity.

Remark

Unlike the goal of traditional code construction to maximize the minimum distance between
codewords, polar coding aims to reduce the probability of error along information-bearing
channels.
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Introduction Polarization Encoding Decoding

Encoding Example

Suppose we maintain a
low tolerance of error,
and we decide to use
only the best three
synthesized channels for
transmitting data.
Therefore, we have

Rate =
3

8
= 0.375

Our control over the
rate can be seen more
clearly if we decide to
use the best 4 channels.
In this case

Rate =
4

8
= 0.5

W

W

W

W

W

W

W

W

Stage 1 Stage 2 Stage 3

C(W )

0.016

0.242

0.348

0.832

0.497

0.913

0.949

0.999

0

0

0

0

0

data

data

data

Figure: 3-stage polar encoder for BEC(0.4)
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Introduction Polarization Encoding Decoding

Encoding Complexity

For a code of length N = 2t ,

As noted, we will have t polarization stages to
synthesize our channels.

Each polarization stage has N/2 butterfly units so as
to cover all codeword indices. Each butterfly unit can
carry out computation in O(1) time.

Therefore, encoding complexity is O(t · N), or

O(N logN)

a

b
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b

Figure: Butterfly Unit
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Introduction Polarization Encoding Decoding

Successive Cancellation Decoding

Looking at Stage 2

W− : b1 → Y1Y3

W− : b2 → Y2Y4

W+ : b3 → Y1Y3b̂1

W+ : b4 → Y2Y4b̂2

Looking at Stage 1

W−− : U1 → b1b2

W−+ : U2 → b1b2Û1

W+− : U3 → b3b4

W++ : U4 → b3b4Û3

Therefore, our channels can be represented as

W−− : U1 → Y1Y2Y3Y4

W−+ : U2 → Y1Y2Y3Y4Û1

W+− : U3 → Y1Y2Y3Y4b̂1b̂2

W++ : U4 → Y1Y2Y3Y4b̂1b̂2Û3

W
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W

W

W

W

Y1

Y2

Y3

Y4

U1

U2

U3

U4

b1

b2

b3

b4

19 / 22



Introduction Polarization Encoding Decoding

Successive Cancellation Decoding

Looking at Stage 2

W− : b1 → Y1Y3

W− : b2 → Y2Y4

W+ : b3 → Y1Y3b̂1

W+ : b4 → Y2Y4b̂2

Looking at Stage 1

W−− : U1 → b1b2

W−+ : U2 → b1b2Û1
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Introduction Polarization Encoding Decoding

Algorithm and Complexity

Decoding can be done using maximum likelihood decision making.

L−− =
P{Y1Y2Y3Y4|U1 = 0}
P{Y1Y2Y3Y4|U1 = 1}

Û1 =


0 if U1 is frozen

0 if L−− > 1

1 otherwise

L−+ =
P{Y1Y2Y3Y4Û1|U2 = 0}
P{Y1Y2Y3Y4Û1|U2 = 1}

Û2 =


0 if U2 is frozen

0 if L−+ > 1

1 otherwise

Decisions for Û3 and Û4 follow similarly.

We have t = logN stages, and at each stage we make N estimations. Therefore, our
decoding complexity is

O(N logN)
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Algebraic Formulation

Define

F2 =

[
1 0
1 1

]
Then, for N = 2t ,

F2N =

[
FN 0
FN FN

]
Therefore, the generator matrix
for a N = 2t length polar code is

GN = BNFN

where BN is a bit-reversal
permutation matrix.

Figure: Symmetric block diagram for 2-stage polarizer [1]

Figure: Alternate block diagram for general polarizer [1]
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