Aayush Rajesh

☑ aayushrajesh2003@gmail.com • ④ aayush2003.github.io

Research Interests

Information and Coding Theory, Communication Systems, Probability Theory, Signal Processing

Education

Stanford University
PhD in Electrical Engineering

Indian Institute of Technology Bombay

Bachelor of Technology (with Honours) in Electrical Engineering Minor in Computer Science and Engineering CPI: 9.90/10

Scholastic Achievements

 Recipient of 3-year Stanford Graduate Fellowship (SGF) 	(2024)
 Conferred Institute Academic Prize for excellence in academic year 	(2021, 2023)
o Achieved AP grade for outstanding performance in Machine Learning and Biology courses	(2021, 2023)
o Awarded Urvish Medh Memorial Prize and Aditya Choubey Memorial Prize for top performa	ance <i>(2021)</i>
 Secured All India Rank 78 in JEE Advanced out of 150 thousand candidates 	(2020)
 Achieved All India Rank 115 in JEE Main out of 1 million candidates 	(2020)

Publications

- o M. Gastpar and A. Rajesh, "The Persuasion Bottleneck," 2024 IEEE International Symposium on Information Theory (ISIT), Athens, Greece, 2024, pp. 2472-2477, doi: 10.1109/ISIT57864.2024.10619395
- o H. K. P. Anilkumar, A. Rajesh, V. Narayanan, M. M. Prabhakaran and V. M. Prabhakaran, "Randomness Requirements for Three-Secret Sharing," 2023 IEEE International Symposium on Information Theory (ISIT), Taipei, Taiwan, 2023, pp. 252-257, doi: 10.1109/ISIT54713.2023.10206455

Research Experience

Byzantine-Resilient Gradient Coding July 2023 - August 2024 Guides: Prof. Nikhil Karamchandani, Prof. Vinod Prabhakaran Undergraduate Thesis Gradient coding is a coding-theoretic framework to distribute the computation of a large gradient to multiple workers, some of which may be faulty. We study exact gradient coding in an adversarial setting

- Worked on developing low-replication gradient coding protocols under byzantine errors given access to a gradient oracle for general data allocation, and analyzed bounds on their communication and computation requirements
- Proposed a scheme requiring fewer the local computations than previously required under full communication
- o Explored the trade-off involved in required computation upon introducing communication constraints

Information-Theoretic Persuasion

Guide: Prof. Michael Gastpar

Worked on a project modeling persuasion using selective information revelation through the analysis of a rate-distortion setting on an indirect source observation

- Studied the actions of an agent attempting to persuade a worker to encode maximum information about the agent's objective by revealing partial information about the worker's objective
- Derived the optimal choice of linear observation kernel in the case of jointly Gaussian worker and agent objectives

Stanford. CA 2024 - Present

Mumbai, India 2020 - 2024

May 2023 - February 2024

École Polytechnique Fédérale de Lausanne

• Worked on quantifying the persuasion using **information inequalities** on the associated quantities and making remarks about the optimal choice of partial observation and encoding rate in the general case

Correlated Multi-Secret Sharing

Guide: Prof. Vinod Prabhakaran

- Worked on information-theoretic cryptography, specifically the analysis of 3-party multi-secret sharing schemes over all possible combinations of binary secrets
- Computed the optimal lower bound on **randomness complexity** of secret sharing in these scenarios and searched for secret sharing schemes with randomness requirements matching the calculated lower bounds
- Presented combinatorial bounds on randomness complexity in scenarios with loose information-theoretic bounds

Technical Projects ☑

Image Enhancement and Processing

Guide: Prof. Ajit Rajwade

- o Implemented computationally efficient mean shift-based and PCA-based filtering techniques for image-denoising
- Designed a PCA-based face recognition system achieving peak recognition rate of 94.53% on ORL database and 60% on Yale database taking into account Lambertian reflectance model
- o Implemented a detail transfer and denoising pipeline for digital photography using flash/no-flash image pairs

EEG Data Acquisition System

Guides: Prof. Siddharth Tallur, Prof. Laxmeesha Somappa

- Created schematic design for an EEG data acquisition system based on an extensive analysis of devices used for **bio-potential measurements** and their constraints
- o Implemented a modular design capable of acquiring and displaying 4-channel EEG data for analysis
- Designed a **4-layer PCB** complete with 24-channel data acquisition analog front-end, daisy-chained ADCs, power supply regulators, and peripheral interfacing with the on-board microcontroller
- Among groups awarded Best Project Award for performance in project demonstration and presentation

Autoencoders for Denoising and Colorization Guide: Prof. Amit Sethi

• Studied **CNN-based autoencoder** architectures for the application of correcting errors in digital images

- Designed a denoising autoencoder trained on MNIST dataset capable of reconstructing test images corrupted by Gaussian noise and burst erasures by compressing into a coded format
- o Explored colorization capabilities and limitations of autoencoders on CIFAR-10 and Intel image datasets

Learning in Constrained MDPs

Guide: Prof. Vivek Borkar

January 2023 - April 2023 EE736: Introduction to Stochastic Optimization

EE769: Introduction to Machine Learning

- o Conducted a literature review on the development of optimal learning algorithms in a constrained MDP setting
- · Presented an analysis of the performance of a sub-linear regret algorithm with cost constraints

Introduction to Polar Codes

Guide: Prof. Nikhil Karamchandani

- Conducted a literature review on polar codes, building on the knowledge of classical error control coding
- Gave a presentation covering channel polarization, and the use of polar codes as a modern coding technique

Reinforcement Learning

Guide: Prof. Shivaram Kalyanakrishnan

August 2022 - November 2022 CS747: Foundations of Intelligent and Learning Agents

- Implemented **regret minimizing** algorithms such as UCB, KL-UCB, and Thompson Sampling in various multi-armed bandit instances and compared their performance with theoretical expectations
- Modelled a situation within the game of cricket as an MDP, and used various methods like policy iteration and evaluation to solve for an optimal policy

oose information-theoretic bounds

Tata Institute of Fundamental Research, Mumbai

May 2022 - February 2023

August 2023 - November 2023 CS663: Digital Image Processing

using flash/no-flash image pa January 2023 - April .

January 2023 - April 2023 EE344: Electronic Design Lab

January 2023 - April 2023

August 2022 - November 2022

EE605: Error Correcting Codes

o Developed an autonomous obstacle-avoidance algorithm based on action-value function approximation methods

CISC and RISC Processor Design

Guide: Prof. Virendra Singh

- o Developed an on-paper design of a microcoded CISC Processor using Hardware Flowchart Method
- Designed and implemented a 16-bit multicycle RISC Processor in VHDL with a Turing-complete instruction set architecture of 17 instructions
- o Extended the design to a 6-stage pipelined architecture and tested both on an Altera MAX V CPLD
- o Optimized performance of pipeline by introducing hazard mitigation techniques such as data forwarding

Key Positions Held

Teaching Assistant

Served as an undergraduate teaching assistant for a batch of 40+ students, with the responsibility of conducting weekly problem-solving sessions, academically mentoring students, and preparing and correcting examination solutions over the duration of the following courses:

Year	Course	Instructor
Autumn 2023	EE605: Error Correcting Codes	Prof. Nikhil Karamchandani
Spring 2022	MA106: Linear Algebra	Prof. S. Sivaramakrishnan
Autumn 2021	MA109: Calculus-I	Prof. Sourav Pal

Department Academic Mentor

Department of Electrical Engineering, IIT Bombay

- $_{\odot}$ Selected from among 100+ applicants on the basis of interviews and extensive peer reviews
- $_{\odot}$ Tasked with mentoring 8 sophomores in the department in managing their academic workload and extracurriculars
- o Involved in the development of a new department mentor program website for student support resources

Technical Skills

Languages	C++, Python, VHDL, Assembly, SQL
Software	Eagle, GNU Radio, Quartus, Keil μ Vision, MATLAB, Ngspice, μ TFX

Relevant Coursework

Communication Theory and Systems	Information and Coding Theory, Error Correcting Codes, Communication Networks, An Introduction to Number Theory and Cryptography, Cryptocurrency and Blockchain
Probability and Statistics	Technologies, Digital Image Processing, Signal Processing Advanced Probability and Random Processes, Estimation and Identification, Advanced Concentration Inequalities, Introduction to Stochastic Optimization, Foundations of
Computer Science	Intelligent and Learning Agents, Markov Chains and Queueing Systems Discrete Structures, Design and Analysis of Algorithms, Data Structures and Algorithms, Logic for Computer Science, Computer Programming and Utilization
Mathematics Miscellaneous	Calculus, Linear Algebra, Differential Equations, Complex Analysis Optimization, Introduction to Machine Learning, Control Systems, Electromagnetic
	Waves

Extracurriculars

 Completed one year of Chess training under National Sports Organisation, IIT Bombay 	(2020-21)
 Stood first in Bazinga Physics organized by Math and Physics Club, IIT Bombay 	(2021)
• Achieved second place in Astromania organized by Krittika - The Astronomy Club, IIT Bombay	(2021)

January 2022 - May 2022 EE309: Microprocessors

June 2022 - May 2023